Совместными
усилиями
к общему успеху
с 1997 года
«Интех ГмбХ»

Высота всасывания насосов и явление кавитации

Жидкость по всасывающему трубопроводу к рабочему колесу насоса подводится под действием разности давления в приемном резервуаре и абсолютного давления в потоке у входа в колесо. Последнее зависит от расположения насоса относительно уровня поверхности жидкости в резервуаре и режима работы насоса. На практике встречаются три основные схемы установки центробежных насосов:

  1. ось насоса выше уровня жидкости в приемном резервуаре (камере) - рис. 2.9, а;
  2. ось насоса ниже уровня жидкости в приемном резервуаре (см. рис. 2.9, б);
  3. жидкость в приемном резервуаре находится под избыточным давлением (см. рис. 2.9,6).

Из уравнения Бернулли для двух сечений (в нашем случае для уровня жидкости в приемном резервуаре 0 — 0 и сечения 1 — 1 на входе в насос следует






где hп.в. — потери во всасывающем трубопроводе;
рa — атмосферное давление, Па;
рв — абсолютное давление на входе в насос, Па;
св — скорость на входе в насос, м/с.

Левая часть уравнения (2.26) представляет собой вакуумметрическую высоту всасывания насоса и измеряется в метрах столба перекачиваемой жидкости.






Рис. 2.9. Схемы установки центробежных насосов






p>Из выражений (2.26) и (2.27) следует:






Если вода в насос поступает с подпором (см. рис. 2.9,б), то






Отрицательное значение Hв указывает на работу насоса с подпором. При работе насоса по схеме, показанной на рис. 2.9, в, выражение вакуумметрической высоты всасывания приобретает вид:






где P0 — абсолютное давление среды над свободной поверхностью жидкости, Па.

В зависимости от конструкции лопастного насоса геометрическую высоту всасывания отсчитывают по-разному. Для горизонтальных насосов Hг.в — это разность отметок оси насоса и уровня жидкости в приемном резервуаре. Для насосов с вертикальным валом Нг.в отсчитывается от середины входных кромок лопастей рабочего колеса (в многоступенчатых насосах колеса первой ступени) до свободной поверхности жидкости в приемном резервуаре (камере, скважине).

Нормальная работа центробежного насоса обеспечивается в таком режиме, когда абсолютное давление во всех точках его внутренней полости больше давления насыщенных паров перекачиваемой жидкости при данной температуре. Если такое условие не соблюдается, то начинаются явления парообразования и кавитации, которые приводят к уменьшению или даже прекращению подачи насоса (насос «срывает»). Кавитацией называют процессы нарушения сплошности потока жидкости, происходящие там, где местное давление понижается и достигает определенного критического значения. При этом наблюдается образование большого количества мельчайших пузырьков, наполненных парами жидкости и газами, выделившимися из нее. Образование пузырьков внешне похоже на кипение жидкости. Возникшие в результате понижения давления пузырьки увеличиваются в размере и уносятся потоком. При этом наблюдается местное повышение скорости движения жидкости вследствие стеснения поперечного сечения потока выделившимися пузырьками пара или газа.

Попадая в область с давлением выше критического, пузырьки разрушаются, при этом их разрушение происходит с большой скоростью и поэтому сопровождается местным гидравлическим ударом в данной микроскопической зоне. Так как конденсация занимает некоторую область и протекает непрерывно в течение длительного времени, это явление приводит к разрушениям значительных площадей поверхности рабочих колес или направляющих аппаратов. Практически появление кавитации при работе насоса можно обнаружить по характерному потрескиванию в области всасывания, шуму и вибрации насоса. Кавитация сопровождается также химическим разрушением (коррозией) материала насоса под действием кислорода и других газов, выделившихся из жидкости в области пониженного давления.

При одновременном действии коррозии и циклических механических воздействий прочность металлических деталей насоса быстро снижается. При этом воздействие кавитации на металлические детали насоса усиливается, если перекачиваемая жидкость содержит взвешенные абразивные вещества: песок, мелкие частицы шлака и т. п. Под действием кавитации поверхности деталей становятся шероховатыми, губчатыми, что способствует быстрому их истиранию взвешенными веществами. В свою очередь эти вещества, истирая поверхности деталей насоса, способствуют усилению кавитации.

Кавитационному разрушению наиболее подвержены чугун и углеродистая сталь. Более устойчивы в этом отношении бронза и нержавеющие стали. В целях повышениях устойчивости деталей центробежных насосов применяют защитные покрытия. Для этого поверхности деталей наплавляют твердыми сплавами, используют местную поверхностную закалку и другие способы защиты. Однако основной фундаментальной действенной мерой борьбы с преждевременным износом проточной части насосов является предупреждение возможности кавитационных режимов их работы.

Для бескавитационной работы насоса необходимо обеспечить условия, при которых давление на входе в насос «Рв» было бы больше критического, т. е. больше давления насыщенных паров перекачиваемой жидкости «Рп». Для предотвращения явления кавитации необходимо, чтобы удельная энергия потока (отнесенная к оси рабочего колеса насоса) была достаточной для обеспечения скоростей и ускорений в потоке при входе в насос и преодоления гидравлических сопротивлений без падения местного давления до значений, ведущих к образованию кавитации.

Кавитационный запас, т. е. превышение удельной энергии потока энергии, соответствующей давлению насыщенных паров перекачиваемой жидкости, равен:






где h — абсолютное давление на входе в насос.

Величина h зависит от типа и конструкции насоса. Для каждого насоса экспериментально устанавливается минимальное значение кавитационного запаса «h мин». Но в технической характеристике насоса указывается значение допустимого кавитационного запаса, т. е. такого кавитационного запаса, который надежно обеспечивает работу насоса без изменений его основных технических показателей. Допустимый кавитационный запас «hдоп=Kдh». Коэффициент запаса Кд в зависимости от конструкции, типа и назначения насоса принимают в пределах 1,1 — 1,5.
Стандартом ISO 2548 введено иное понятие кавитационного запаса. В документе применяется термин «суммарный напор всасывания при нагнетании» (т.е. при работе насоса). Этот термин обозначается (NPSH). Математически (NPSH) выражается так:






где Z1 — расстояние от плоскости входа до оси рабочего колеса; рв-—избыточное давление на входе в насос.

На входе в насос давление «рв», как правило, является отрицательной величиной. Сравнивая выражение (NPSH) с формулой, описывающей кавитационный запас, очевидно, что оно отличается только наличием члена Z1, который учитывает разность геометрических высот центра тяжести входного патрубка насоса и рабочего колеса. Для больших насосов эта величина может быть существенной.
Из соотношений (2.27) и (2.31) следует, что допустимая вакуумметрическая высота всасывания






или






где ра — напор, соответствующий атмосферному давлению (приведенная высота атмосферного давления), метры столба перекачиваемой жидкости; hн.п — напор, соответствующий давлению насыщенных паров перекачиваемой жидкости (приведенная высота давления насыщенных паров жидкости), метры столба жидкости.

Допустимая геометрическая высота всасывания вычисляется из соотношений (2.26) и (2.32)






или






Таким образом, допустимая геометрическая высота всасывания насосной установки равна допустимой вакуумной высоте всасывания насоса минус потери напора во всасывающем трубопроводе. В технической документации на насосы (каталогах, паспортах и пр.) указывается допустимая высота всасывания (или допустимый кавитационный запас) для нормальных условий, т. е. для атмосферного давления 0,1 МПа (что приблизительно соответствует 760 мм рт. ст.) и температуры перекачиваемой жидкости 20°C.

Для воды и сточной жидкости допустимая высота всасывания применительно к реальным условиям эксплуатации насоса вычисляется по соотношению






а допустимая геометрическая высота всасывания — по формуле






или






где Нв.доп. —номинальная допустимая высота всасывания (по каталогу);
pа/pg — приведенная высота атмосферного давления, м вод. ст.;
0,24 — значение hп.п для воды при t=20С.

Значения приведенной высоты атмосферного давления pа/pg в зависимости от расположения местности над уровнем моря указаны ниже:

Высота над уровнем моря, м -600 0 100 200 300 400 500 600 700 800 100 1500 2000
pа/pg, м вод.ст. 11.3 10.3 10.2 10.1 10 9.8 9.7 9.6 9.5 9.4 9.2 8.6 8.4

Значения высоты давления насыщенных водяных паров hн.п в зависимости от температуры воды приведены ниже:

Температура, °C 5 10 20 30 40 50 60 70 80 90 100
hн.п м водного ст. 0.09 0.12 0.24 0.43 0.75 1.25 2.02 3.17 4.82 7.14 10.33

Потери напора во всасывающем трубопроводе складываются из потерь на трение при движении жидкости по трубе и потерь на местные сопротивления






Наши специалисты всегда рады ответить на любые Ваши вопросы.